Session 11

Inventory Modeling

Economic Order Quantity Quantity Discounts

Last revised: July 6, 2011 Copyright © 1994-2011 Richard Brenner

11/1

Spreadsheet Models for Managers: Session 11

Review of last time: Capital Leases II: Modeling

- Capital leases affect all three financial statements
 - Cash outlays
 - Assets
 - Liabilities
 - Depreciation
 - Interest expense
- For streams of lease events under identical leases
 - Create a Lease Characteristic Array
 - Convolve with lease event stream
- In models with multiple identical leases, combine lease streams, then compute effects on financial statements rather than vice versa

Spreadsheet Models for Managers: Session 11

Capacity models

• Categories of capacity questions

- Inventory
 - "Do we have enough"
 - "What's the restock point?"
 - "What is the best choice of restock quantity?"
- Servers
 - "How many checkouts should a supermarket have open?"
 - "How many phone lines do we need to support our business?"
 - "How many customer service reps are enough?"
 - "How many file servers are enough?"
- Space
 - "When should we lease more?"
 - "How much parking do we really need?"
- Each category of capacity problem requires a unique approach.

Importance of inventory

- Inventory management is most important in goods-oriented operations
 - Manufacturing

• Real estate development/rental

• Mining

• Wholesale distribution/logistics

• Retail

- Fulfillment
- Inventory is less important when
 - Added value is mostly not related to goods
 - Professional services operations
 - Software or other knowledge-driven companies
 - Finished Goods (and their components) cannot be stocked

• But even these organizations must inventory some items

Keep inventory low when holding costs are high

- Electric power
- Telecommunications
- Broadcasting
- Common carrier transport
- Education
- Entertainment

Kinds of inventory

- Raw materials and purchased parts for use in finished goods
- Work in process (partial assemblies)
- Finished goods
- Maintenance inventory
- Internally generated vs. externally acquired inventory

Inventory cost factors

• Costs related to the number of orders

- Decision to order
- Telephone, postage, other communications
- Labor
- Computation and record-keeping (accounting, tracking, control)
- Price verification (external only)
- Receiving and handling
- Freight
- Setup and stowage

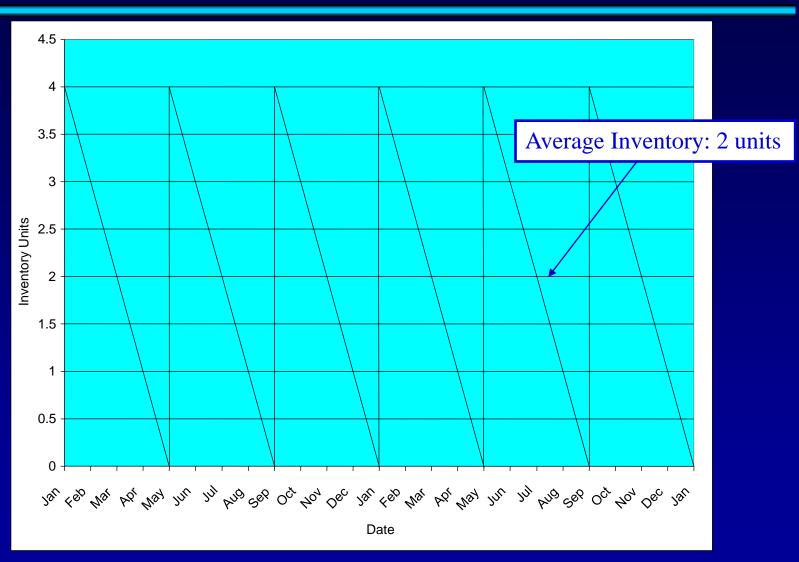
• Costs related to the total value and bulk of inventory

- Handling and storage
- Interest costs
- Opportunity costs relative to alternative inventoried components
- Insurance, taxes, space, equipment
- Heating, cooling, humidity control
- Shelf life factors: spoilage, theft, obsolescence

Inventory cost factors (2)

- Costs of stockouts
 - Lost sales
 - Lost customers
 - Idle time (no parts -> idle assembly lines)
 - Idle workpieces in process
 - back-order/expedite cycle
- Size of order
 - quantity discounts
 - freight
 - insurance
 - security

Knowing the true cost of inventory is important even when you outsource it.



Effects of demand On inventory strategy

- Constant demand vs. variable demand
 - Constant demand is easier to manage
 - Constant demand is easier to model
 - Constant demand is more and more rare because:
 - The world is changing rapidly
 - Repeated orders of identical products are less and less common
- Variable demand is best modeled statistically
- First understand the constant demand problem

Representing constant demand

11/9

Constant demand data

- This is the data for the graphical example on the previous slide
- Inventory is replenished every fourth month
- The data show inventory at the start of each month
- Notice: no zeros in the table, but the restock point *is* zero.
- Average inventory for constant demand:

I average =
$$\frac{I_{reorder} + I_{max}}{2}$$

If I reorder = 0:
I average = $\frac{I_{max}}{2}$

Jan	4
Feb	3
Mar	4 3 2 1
Apr	1
May	4
Jun	3
Jul	4 3 2 1
	1
Sep Oct	4 3 2
Oct	3
Nov	2
Dec	1
Jan	4
Feb	3
Mar	4 3 2 1 4 3 2
Apr	1
May	4
Jun	3
Jul	2
Aug	1
Sep	1 4 3 2
Oct	3
Nov	2
Dec	1
Jan	0

Constant demand

11/11

For constant demand, use evenly spaced, equal sized orders

On an annual basis:

$$\begin{pmatrix} \text{Total} \\ \text{Cost} \end{pmatrix} = \begin{pmatrix} \text{Cost Related} \\ \text{to No. Orders} \end{pmatrix} + \begin{pmatrix} \text{Cost Related to} \\ \text{Inventory Size} \end{pmatrix}$$
$$= \frac{D}{Q} C_0 + \frac{Q}{2} C_c$$
$$= \frac{D}{Q} C_0 + \frac{I_{\text{max}}}{2} C_c \quad \text{(if restock point is 0)}$$

where

D = Annual demand (units per year) Q = Quantity in one order (units) $C_0 = Cost to place one order (dollars)$ $C_c = Carrying cost of inventory (dollars per unit per year)$

Economic order quantity

• EOQ: Lowest-cost order quantity for constant demand

It can be shown mathematically that EOQ is the value of Q for which Ordering Costs = Carrying Costs.

Readings: Economic Order Quantity

11/13

When there is a quantity discount, there is an additional term in the cost equation:

Total Cost =
$$\frac{D}{Q}C_0 + \frac{Q}{2}C_c + Du(Q)$$

u(Q) = unit price as a function of order size

Here we are computing not only the inventory costs, but the buying costs as well.

> To minimize total costs, you have to take an experimental approach: compute costs for each break in the quantity schedule.

Examples

- You are a buyer of dyes for an apparel manufacturer. The annual demand for dyes of all colors is 64,000 liters. Price is \$10 per liter. The cost to hold an item in inventory is 20% of the value of the item per year. It costs \$10 to place an order (you use email). What is the EOQ? Make plots showing the two components of total cost as functions of order quantity.
- You expect volume to pick up next year, so you negotiated a quantity discount. If you buy more than 1000 liters at a time, you can get a price of \$8 per liter. If you buy more than 3000 liters at a time, the price is only \$7 per liter. Now what is the optimum order quantity?

11/15

• Readings: Economic Order Quantity

Preview of next time: Service Systems

11/16

- A Service System is a facility containing servers, customer entry and exit facilities, and a waiting facility
- The simplest system is single-stage, single-server
- When arrivals are Poisson distributed, and service completion is exponentially distributed, we can predict system performance