
Spreadsheet Models for Managers: Session 14

14/1

Copyright © 1994-2011 Richard Brenner

Spreadsheet Models for Managers

Session 14

Using Macros II

Function Macros

for Arrays in

Visual Basic for Applications

Last revised: July 6, 2011

Spreadsheet Models for Managers: Session 14

14/2

Copyright © 1994-2011 Richard Brenner

Review of last time:
Using Macros I

• Macros reduce maintenance costs, reduce errors, and speed
development

• Two kinds of macros: function macros and command macros

• Two languages — VBA and XLM

• Basic VBA macro structure

• Variable declarations

• Computations

• Returning values

• Objects have properties and methods

• Methods and properties use postfix syntax

• Caller, Column, Row, Columns, Rows, Count,

• Application object

Spreadsheet Models for Managers: Session 14

14/3

Copyright © 1994-2011 Richard Brenner

Array function macros

• Last time we discussed scalar function macros — macros that
return a single value

• Array function macros return a rectangular array of values

• Array function macros are powerful

• Manage blocks of data at high levels

• Support array computations

• Reduce maintenance costs and development time

• But they require more machinery

• Iteration

• Understanding Excel’s object model

• Dynamic allocation

• They’re worth it

• Let’s start with a few simple examples

Spreadsheet Models for Managers: Session 14

14/4

Copyright © 1994-2011 Richard Brenner

Example 1:
Add two 3x3 arrays

• Returns the sum of two 3x3 ranges

• This works, but it’s unnecessary: Excel can already do this

• Let’s see how we built this

Function ArraySum(range1 As Range, range2 As Range) As Variant

 Dim i As Integer, j As Integer 'iteration variables

 Dim answerArray(3, 3)

 For i = 1 to 3

 For j = 1 to 3

 answerArray(i, j) = range1(i, j) + range2(i, j)

 Next j

 Next i

 ArraySum = answerArray

End Function

Spreadsheet Models for Managers: Session 14

14/5

Copyright © 1994-2011 Richard Brenner

ArraySum:
How to build it

• Create a module

• Insert module options

• Write a function macro in the module.
 Start with function statement, which includes the function name and its argument

list

• As usual, the body of the function definition contains two parts:
• Variable declarations

• Computations

Function ArraySum(range1 As Range, range2 As Range) As Variant

 <Variable declarations>

 <Computations>

End Function

Since Variant is the default

data type, this is optional

Spreadsheet Models for Managers: Session 14

14/6

Copyright © 1994-2011 Richard Brenner

• Use Dim statement to declare the answer array

• Use an assignment statement to return the value

Function ArraySum(range1 As Range, range2 As Range) As Variant

 Dim answerArray(3, 3)

 <Other variable declarations>

 <Computations>

 ArraySum = answerArray

End Function

ArraySum:
Create the answer array

Spreadsheet Models for Managers: Session 14

14/7

Copyright © 1994-2011 Richard Brenner

How to use iteration

• Iteration is a repeat form

• Many varieties of iteration in VBA; we use a simple one:

• Iteration can be nested; that’s how we handle two-dimensional
arrays

• You must include variable declarations for iteration variables

For <var> = <min> To <max>

 <sequence-of-statements>

Next <var>

For <varx> = <minx> To <maxx>

 For <vary> = <miny> To <maxy>

 <sequence-of-statements>

 Next <vary>

Next <varx>

Spreadsheet Models for Managers: Session 14

14/8

Copyright © 1994-2011 Richard Brenner

Now iterate through the
argument array

• Notice that declarations are needed for the iteration variables

Function ArraySum(range1 As Range, range2 As Range) As Variant

 Dim answerArray(3, 3)

 Dim i As Integer, j As Integer

 For i = 1 To 3

 For j = 1 To 3

 answerArray(i, j) = range1.Cells(i, j) + range2.Cells(i, j)

 Next j

 Next i

 ArraySum = answerArray

End Function

Spreadsheet Models for Managers: Session 14

14/9

Copyright © 1994-2011 Richard Brenner

Example 2: Multiply an
array by a constant

• The macro takes two arguments:

• array of any size

• constant

• It returns an array equal to array * constant

• Plan of calculation:

• Create an array to hold the answer

• Iterate through the argument array:

• Pick up the array element

• Multiply it by the constant

• Insert the result into the corresponding place in the answer array

• This one is trickier because we don’t know the size of the array

• This is really useless, because Excel can do this without a macro

Spreadsheet Models for Managers: Session 14

14/10

Copyright © 1994-2011 Richard Brenner

Now build a macro to do this

• Create a module as before (if needed)

• Write a function macro in the module.

Start with function statement, which includes the function name and its argument list

• As usual, the body of the function definition contains two parts:

• Variable declarations

• Computations

Function Multiply(argRange As Range, factor As Double) As Variant

 <Variable declarations>

 <Computations>

End Function

Since Variant is the default

data type, this is optional

Spreadsheet Models for Managers: Session 14

14/11

Copyright © 1994-2011 Richard Brenner

Dynamic arrays

• We can’t always know the size of an array when we’re writing the
program—it can depend on the runtime environment.

• We need the ability to allocate space for it on the fly: use ReDim

• ReDim declares the array’s size at execution time

• To declare a two dimensional array 5x10:

• Sometimes the size depends on the sizes of arguments:

 inputRows = argRange.Rows.Count

inputColumns = argRange.Columns.Count

ReDim answerArray(inputRows,inputColumns)

ReDim answerArray(5,10)

Spreadsheet Models for Managers: Session 14

14/12

Copyright © 1994-2011 Richard Brenner

Create the answer array

• Steps:

• At compile time:

• Declare the array

• At run time:

• Extract the sizes of the argument array

• Resize the answer array

Function Multiply(argRange As Range, factor As Double) As Variant

 Dim inputRows As Integer, inputColumns As Integer

 Dim answerArray

 inputRows = argRange.Rows.Count

 inputColumns = argRange.Columns.Count

 ReDim answerArray(inputRows, inputColumns)

 <Computations>

End Function

Spreadsheet Models for Managers: Session 14

14/13

Copyright © 1994-2011 Richard Brenner

Now iterate through the
argument array

Notice that declarations are needed for the iteration variables

Function Multiply(argRange As Range, factor As Double) As Variant

 Dim i As Integer, j As Integer

 Dim inputRows As Integer, inputColumns As Integer

 Dim answerArray

 inputRows = argRange.Rows.Count

 inputColumns = argRange.Columns.Count

 ReDim answerArray(inputRows, inputColumns)

 For i = 1 To inputRows

 For j = 1 To inputColumns

 answerArray(i, j) = argRange.Cells(i, j) * factor

 Next j

 Next i

End Function

Spreadsheet Models for Managers: Session 14

14/14

Copyright © 1994-2011 Richard Brenner

Finally, return the value

Function Multiply(argRange As Range, factor As Double) As Variant

 Dim i As Integer, j As Integer

 Dim inputRows As Integer, inputColumns As Integer

 Dim answerArray

 inputRows = argRange.Rows.Count

 inputColumns = argRange.Columns.Count

 ReDim answerArray(inputRows, inputColumns)

 For i = 1 To inputRows

 For j = 1 To inputColumns

 answerArray(i, j) = argRange.Cells(i, j) * factor

 Next j

 Next i

 Multiply = answerArray

End Function

Spreadsheet Models for Managers: Session 14

14/15

Copyright © 1994-2011 Richard Brenner

More useful example

• You’re writing a plan for producing a product line of hose
couplings.

• You must consider materials requirements and sales projections.

• The materials requirements are given as an array of
Coupling-Type by Diameter [name: BrassContent]

• Expected shipments are given as an array of
Coupling-Type-and-Size by Month [name: ProjectedSales]

• The dimensions of these tables are incompatible.

• We need to “unwind” the BrassContent range.

Spreadsheet Models for Managers: Session 14

14/16

Copyright © 1994-2011 Richard Brenner

Hose coupling data

Brass Content (kgm) 4 Inch 6 Inch 8 Inch

T-Joint 2.5 3.2 5.1

L-Joint 3.6 4.3 6.2

Y-Joint 4.3 5.4 8.7

Projected Shipments Oct Nov Dec Jan Feb Mar

T-Joint 4 Inch 515 170 436 419 528 357

L-Joint 4 Inch 543 205 570 276 140 395

Y-Joint 4 Inch 371 369 133 489 566 215

T-Joint 6 Inch 572 149 138 314 506 592

L-Joint 6 Inch 229 579 413 295 228 568

Y-Joint 6 Inch 531 166 594 458 416 218

T-Joint 8 Inch 217 236 311 291 566 404

L-Joint 8 Inch 462 511 306 259 458 574

Y-Joint 8 Inch 273 167 374 544 405 257

Spreadsheet Models for Managers: Session 14

14/17

Copyright © 1994-2011 Richard Brenner

Unwinding
the brass content data

T-Joint 4 Inch 2.5

L-Joint 4 Inch 3.6

Y-Joint 4 Inch 4.25

T-Joint 6 Inch 3.2

L-Joint 6 Inch 4.3

Y-Joint 6 Inch 5.44

T-Joint 8 Inch 5.1

L-Joint 8 Inch 6.2

Y-Joint 8 Inch 8.67

T-Joint 4 Inch =INDEX(BrassContent,0,1)

L-Joint 4 Inch =INDEX(BrassContent,0,1)

Y-Joint 4 Inch =INDEX(BrassContent,0,1)

T-Joint 6 Inch =INDEX(BrassContent,0,2)

L-Joint 6 Inch =INDEX(BrassContent,0,2)

Y-Joint 6 Inch =INDEX(BrassContent,0,2)

T-Joint 8 Inch =INDEX(BrassContent,0,3)

L-Joint 8 Inch =INDEX(BrassContent,0,3)

Y-Joint 8 Inch =INDEX(BrassContent,0,3)

Spreadsheet Models for Managers: Session 14

14/18

Copyright © 1994-2011 Richard Brenner

Now build a macro to do this

• Create a module as before (if needed)

• Insert module options

• Write a function macro in the module.

Start with function statement, which includes the function name and its argument list

• As usual, the body of the function definition contains two parts:

• Variable declarations

• Computations

Function VLineUp(argRange As Range) As Variant

 <Variable declarations>

 <Computations>

End Function

Since Variant is the default

data type, this is optional

Spreadsheet Models for Managers: Session 14

14/19

Copyright © 1994-2011 Richard Brenner

Overall approach

• Receive the BrassContent array as an argument (3x3)

• Assemble a 9x1 array by stacking the columns of BrassContent

• Return the 9x1 array

• We will iterate through the cells of BrassContent, inserting its
values into the result

Spreadsheet Models for Managers: Session 14

14/20

Copyright © 1994-2011 Richard Brenner

Planning the iteration

• Where will the (i, j) element of the input end up?

• (j-1) * 3 + i

• This isn’t quite it, though: it’s a 1x9 array.

• We have to transpose it

Function VLineUp(argRange As Range) as Variant

 Dim answerArray(9), i As Integer, j As Integer

 For j = 1 To 3

 For i = 1 To 3

 answerArray((j - 1) * 3 + i) = argRange.Cells(i, j)

 Next i

 Next j

 VLineUp = answerArray

End Function

Spreadsheet Models for Managers: Session 14

14/21

Copyright © 1994-2011 Richard Brenner

Finally

Function VLineUp(argRange As Range) as Variant

 Dim answerArray, i As Integer, j As Integer

 For j = 1 To 3

 For i = 1 To 3

 answerArray((j - 1) * 3 + i) = argRange.Cells(i, j)

 Next i

 Next j

 VLineUp = Application.WorksheetFunction.Transpose(answerArray)

End Function

Spreadsheet Models for Managers: Session 14

14/22

Copyright © 1994-2011 Richard Brenner

Limitations of VLineUp

• It assumes that the input is 3x3

• It can produce only a 1x9

• In real problems, it’s much more useful if you can avoid
assumptions about array sizes

• Things might change

• You might want to use the macro for another project

• A more useful unwinder wouldn’t assume 3x3

• It would unwind any square range into a single column

• How can we do that? Use dynamic arrays

Spreadsheet Models for Managers: Session 14

14/23

Copyright © 1994-2011 Richard Brenner

Dynamic unwinder

Function VLineUp(argRange As Range) As Variant

 Dim answerArray, i As Integer, j As Integer

 Dim inputColumns As Integer, inputRows As Integer

 inputRows = argRange.Rows.Count

 inputColumns = argRange.Columns.Count

 ReDim answerArray(inputRows*inputColumns)

 For j = 1 To inputColumns

 For i = 1 To inputRows

 answerArray((j - 1) * inputRows + i) = argRange.Cells(i, j).Value

 Next i

 Next j

 VLineUp = answerArray

End Function

Spreadsheet Models for Managers: Session 14

14/24

Copyright © 1994-2011 Richard Brenner

Resize and Offset

• The functionality of the worksheet function OFFSET is available
in VBA in a slightly different form

• Offset is a Range method that works like the worksheet function
OFFSET, but it takes only the first two arguments.

• Resize is a Range method that returns a range with a different
shape and size, but 0,0 offset.

• You can chain them together:

theRange.Offset(i, j)

theRange.Resize(i, j)

theRange.Offset(3,2).Resize(1,4)

Spreadsheet Models for Managers: Session 14

14/25

Copyright © 1994-2011 Richard Brenner

A tip about arrays

• Excel worksheet functions (mostly) work for ranges as well as
individual cells.

• When you use them inside a VBA macro, you don’t need to
iterate (see previous slide).

• If you assign their return value to the function name, you’re
done

Spreadsheet Models for Managers: Session 14

14/26

Copyright © 1994-2011 Richard Brenner

The main points

• Iteration

• Dynamic arrays

• Using the Set statement for objects

Spreadsheet Models for Managers: Session 14

14/27

Copyright © 1994-2011 Richard Brenner

Reference readings

• Rob Bovey, Stephen Bullen, John Green, Robert Rosenberg,
Excel 2002 VBA Programmers Reference. Birmingham, UK:
2001. Wrox Limited.

• This is a whole lot more than you need for this course. Don’t even think of
looking at this unless you want to dive into programming. But if you want to, it’s
a solid reference.

• On line help for VB takes some getting used to, but it is
serviceable.

• Readings: Excel Macros in Visual Basic for Applications

Spreadsheet Models for Managers: Session 14

14/28

Copyright © 1994-2011 Richard Brenner

Preview of next time:
Spreadsheet Tools for Managers

• Rough out your command macros using the macro recorder

• Many commands can’t be recorded

• Separate the presentation function from the maintenance
function

• Using the Set statement for objects

• Use templates to collect data from the organization

• Avoiding putting macros in templates

• Distribute macro collections as add-ins

