Spreadsheet Models for Managers 14/1

Session 14

Using Macros I

Function Macros
for Arrays In
Visual Basic for Applications

Last revised: July 6, 2011
Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Review of last time:
Using Macros 1

14/2

« Macros reduce maintenance costs, reduce errors, and speed

development

e Two kinds of macros: function macros and command macros

« Two languages — VBA and XLM

e Basic VBA macro structure

« Variable declarations
« Computations
 Returning values

 Objects have properties and methods

« Methods and properties use postfix syntax
 Caller, Column, Row, Columns, Rows, Count,
 Application object

Spreadsheet Models for Managers: Session 14

Copyright © 1994-2011 Richard Brenner

Array function macros S

e Last time we discussed scalar function macros — macros that
return a single value

 Array function macros return a rectangular array of values

 Array function macros are powerful
« Manage blocks of data at high levels
 Support array computations
« Reduce maintenance costs and development time

 But they require more machinery

* lteration
» Understanding Excel’s object model
« Dynamic allocation

e They’re worth 1t
« Let’s start with a few simple examples

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Example 1: 14/4
Add two 3x3 arrays

« Returns the sum of two 3x3 ranges

Function ArraySum(rangel As Range, range2 As Range) As Variant
Dim i As Integer, j As Integer ‘iteration variables
Dim answerArray(3, 3)

Fori=1to3

Forj=1to3
answerArray(i, j) = rangel(i, j) + range2(i, j)
Next j
Next i
ArraySum = answerArray
End Function

» This works, but it’s unnecessary: Excel can already do this

e Let’s see how we built this

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

ArraySum: 14/5
How to build it

Create a module
Insert module options

Write a function macro in the module.

Start with function statement, which includes the function name and its argument
list

Function ArraySum(rangel As Range, range2 As Range)
<Variable declarations>

<Computations>
End Function

As usual, the body of the function definition contairs two parts:
 Variable declarations
« Computations

Since Variant is the default

data type, this is optional

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

ArraySum: 14/6
Create the answer array

« Use Dim statement to declare the answer array

Function ArraySum(rangel As Range, range2 As Range) As Variant
Dim answerArray(3, 3)
<Other variable declarations>

<Computations>
ArraySum = answerArray
End Function

 Use an assignment statement to return the value

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

How to use iteration 14/7

Iteration is a repeat form
Many varieties of iteration in VBA,; we use a simple one:

For <var> = <min> To <max>

<sequence-of-statements>
Next <var>

[teration can be nested; that’s how we handle two-dimensional
arrays

For <varx> = <minx> To <maxx>
For <vary> = <miny> To <maxy>
<sequence-of-statements>

Next <vary>
Next <varx>

You must include variable declarations for iteration variables

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Now iterate through the 14/8
argument array

e Notice that declarations are needed for the iteration variables

Function ArraySum(rangel As Range, range2 As Range) As Variant
Dim answerArray(3, 3)
Dim i As Integer, j As Integer
Fori=1To 3
Forj=1To 3

answerArray(i, j) = rangel.Cells(i, j) + range2.Cells(i, j)
Next |
Next |
ArraySum = answerArray
End Function

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Example 2: Multiply an 14/9
array by a constant

The macro takes two arguments:

« array of any size
* constant

It returns an array equal to array * constant

Plan of calculation:
 Create an array to hold the answer
« [terate through the argument array:
 Pick up the array element
« Multiply it by the constant
« Insert the result into the corresponding place in the answer array

This one 1s trickier because we don’t know the size of the array
This is really useless, because Excel can do this without a macro

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Now build a macro to do this L L

Create a module as before (if needed)

Write a function macro in the module.
Start with function statement, which includes the function name and its argument list

Function Multiply(argRange As Range, factor As Double)
<Variable declarations>

<Computations>
End Function

As usual, the body of the function definition contains two parts:
» Variable declarations
« Computations

Since Variant is the default

data type, this is optional

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Dynamic arrays Syt

 We can’t always know the size of an array when we’re writing the
program—it can depend on the runtime environment.

« \We need the ability to allocate space for it on the fly: use ReDim
« ReDim declares the array’s size at execution time
» To declare a two dimensional array 5x10:

ReDim answerArray(5,10)

« Sometimes the size depends on the sizes of arguments:

inputRows = argRange.Rows.Count

inputColumns = argRange.Columns.Count
ReDim answerArray(inputRows,inputColumns)

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Create the answer array LR R

o Steps:
« At compile time:
« Declare the array
« At run time:
 Extract the sizes of the argument array
 Resize the answer array

Function Multiply(argRange As Range, factor As Double) As Variant
Dim inputRows As Integer, inputColumns As Integer
Dim answerArray
inputRows = argRange.Rows.Count

inputColumns = argRange.Columns.Count
ReDim answerArray(inputRows, inputColumns)
<Computations>

End Function

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Now iterate through the 14/13
argument array

Notice that declarations are needed for the iteration variables

Function Multiply(argRange As Range, factor As Double) As Variant
Dim i As Integer, j As Integer
Dim inputRows As Integer, inputColumns As Integer
Dim answerArray
inputRows = argRange.Rows.Count
inputColumns = argRange.Columns.Count
ReDim answerArray(inputRows, inputColumns)

Fori=1To inputRows
For j =1 To inputColumns
answerArray(i, j) = argRange.Cells(i, j) * factor
Next j
Next |

End Function

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Finally, return the value LR

Function Multiply(argRange As Range, factor As Double) As Variant
Dim i As Integer, j As Integer
Dim inputRows As Integer, inputColumns As Integer
Dim answerArray
inputRows = argRange.Rows.Count
inputColumns = argRange.Columns.Count
ReDim answerArray(inputRows, inputColumns)

Fori=1 To inputRows
For j =1 To inputColumns
answerArray(i, j) = argRange.Cells(i, j) * factor
Next j
Next |
Multiply = answerArray
End Function

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

More useful example 14/15

* You’re writing a plan for producing a product line of hose
couplings.

 You must consider materials requirements and sales projections.

« The materials requirements are given as an array of
Coupling-Type by Diameter [name: BrassContent]

 EXxpected shipments are given as an array of
Coupling-Type-and-Size by Month [name: ProjectedSales]

« The dimensions of these tables are incompatible.
* We need to “unwind” the BrassContent range.

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Hose coupling data

14/16

Brass Content (kgm)

Projected Shipments
T-Joint 4 Inch
L-Joint 4 Inch
Y-Joint 4 Inch
T-Joint 6 Inch
LL-Joint 6 Inch
Y-Joint 6 Inch
T-Joint 8 Inch
L-Joint 8 Inch
Y-Joint 8 Inch

Spreadsheet Models for Managers: Session 14

4 Inch 6 Inch 8 Inch

T-Joint
L-Joint
Y-Joint

Oct

543
371
572
229
531
217
462
2173

Nov Dec Jan Feb Mar

Copyright © 1994-2011 Richard Brenner

Unwinding 14/17
the brass content data

T-Joint 4 Inc
L-Joint 4 Inc
Y-Joint 4 Inc
T-Joint 6 Inc
L-Joint 6 Inc
Y-Joint 6 Inc
T-Joint 8 Inc
L-Joint 8 Inch|6.

Y-Joint 8 Inch|8.67

T-Joint 4 Inch|=INDEX(BrassContent,0,1
L-Joint 4 Inch|=INDEX(BrassContent,0,1
Y-Joint 4 Inch |=INDEX(BrassContent,0,1
T-Joint 6 Inch|=INDEX(BrassContent,0,2
L-Joint 6 Inch|=INDEX(BrassContent,0,2
Y-Joint 6 Inch |=INDEX(BrassContent,0,2
T-Joint 8 Inch|=INDEX(BrassContent,0,3
L-Joint 8 Inch |=INDEX(BrassContent,0,3
Y-Joint 8 Inch |[=INDEX(BrassContent,0,3

I!

3!3
o1

OO0 W|IA[WIN
NIFRP[BRIWININ|O|OT

44

) o f fum R um

i

-y

!!

=

=

!!

!

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Now build a macro to do this TR

Create a module as before (if needed)
Insert module options

 Write a function macro in the module.
Start with function statement, which includes the function name and its argument list

Function VLineUp(argRange As Rang
<Variable declarations>

<Computations>
End Function

As usual, the body of the function definition contains two parts:
» Variable declarations

- Computations : —
Since Variant is the default

data type, this is optional

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Overall approach ey

Recelve the BrassContent array as an argument (3x3)
Assemble a 9x1 array by stacking the columns of BrassContent

Return the 9x1 array

We will iterate through the cells of BrassContent, inserting Its
values into the result

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Planning the iteration Ly

« Where will the (i, j) element of the input end up?
e (J-1) * 3 +1

Function VLineUp(argRange As Range) as Variant
Dim answerArray(9), i As Integer, j As Integer

Forj=1To 3
Fori=1To 3

answerArray((j - 1) * 3 + i) = argRange.Cells(i, j)
Next |
Next |
VLineUp = answerArray
End Function

« This 1sn’t quite 1t, though: 1t’s a 1x9 array.
« We have to transpose it

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Finally e

Function VLineUp(argRange As Range) as Variant
Dim answerArray, i As Integer, j As Integer

Forj=1To 3
Fori=1To 3

answerArray((j - 1) * 3 + i) = argRange.Cells(i, j)
Next i
Next |
VLineUp = Application.WorksheetFunction.Transpose(answerArray)
End Function

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Limitations of VLineUp 14/22

|t assumes that the input is 3x3
* |t can produce only a 1x9

 In real problems, it’s much more useful if you can avoid
assumptions about array sizes

« Things might change
* You might want to use the macro for another project

e A more useful unwinder wouldn’t assume 3x3
« It would unwind any square range into a single column
« How can we do that? Use dynamic arrays

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Dynamic unwinder S e

Function VLineUp(argRange As Range) As Variant
Dim answerArray, i As Integer, j As Integer
Dim inputColumns As Integer, inputRows As Integer

inputRows = argRange.Rows.Count
inputColumns = argRange.Columns.Count
ReDim answerArray(inputRows*inputColumns)

For j =1 To inputColumns
Fori=1To inputRows
answerArray((j - 1) * inputRows + i) = argRange Cells(i, j).Value
Next i
Next j
VLineUp = answerArray
End Function

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Resize and Offset 14/24

» The functionality of the worksheet function OFFSET Is available
In VBA in a slightly different form

« Offset is a Range method that works like the worksheet function
OFFSET, but it takes only the first two arguments.

theRange.Offset(i, j)

 Resize iIs a Range method that returns a range with a different
shape and size, but 0,0 offset.

theRange.Resize(i, j)

 You can chain them together:

theRange.Offset(3,2).Resize(1,4)

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

A tip about arrays S s

« Excel worksheet functions (mostly) work for ranges as well as
Individual cells.

 When you use them inside a VBA macro, you don’t need to
Iterate (see previous slide).

 If you assign their return value to the function name, you’re
done

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

The main points L e

e |teration
« Dynamic arrays
 Using the Set statement for objects

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Reference readings 14/27

« Rob Bovey, Stephen Bullen, John Green, Robert Rosenberg,
Excel 2002 VBA Programmers Reference. Birmingham, UK:
2001. Wrox Limited.

 This 1s a whole lot more than you need for this course. Don’t even think of
looking at this unless you want to dive into programming. But if you want to, it’s
a solid reference.

« On line help for VB takes some getting used to, but it is
serviceable.

. ﬂ Readings: Excel Macros in Visual Basic for Applications

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

Preview of next time: 14/28
Spreadsheet Tools for Managers

» Rough out your command macros using the macro recorder
 Many commands can’t be recorded

 Separate the presentation function from the maintenance
function

 Using the Set statement for objects

« Use templates to collect data from the organization
 Avoiding putting macros in templates

 Distribute macro collections as add-ins

Spreadsheet Models for Managers: Session 14 Copyright © 1994-2011 Richard Brenner

